

2.4 The Chain Rule

Exploration/warmup

1) Use the basic power rule to find f'(x) given $f(x) = (x+3)^2$. Next, multiply out and then differentiate. Do you notice any similarities or differences?

2) Now, use the basic power rule to find g'(x) given $g(x) = (2x-1)^2$. Next, multiply out and then differentiate. Do you notice any similarities or differences?

3) Next, use the basic power rule to find h'(x) given $h(x) = (3x^2 + 1)^2$. Next, multiply out and then differentiate. Do you notice any similarities or differences?

4) Next, use the basic power rule to find m'(x) given $m(x) = (x^3 + x)^2$. Next, multiply out and then differentiate. Do you notice any similarities or differences?

<u>Composite functions:</u> if $f(x) = x^2$ and g(x)= (2x+3) what is f(g(x))What if $f(x)=x^{10}$

When differentiating functions with inside parts and outside parts, we must use **The Chain Rule so we don't have to multiply 10 times**.

The Chain Rule

If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x, then y = f(g(x)) is a differentiable function of x and

$$\frac{d}{dx}[f(g(x))] = f'(g(x))g'(x) \quad \text{or} \quad y' = f'(u) \cdot u' \quad \text{or}$$

Ex. 1: Use the Chain Rule to find the derivative:

Let $f(x)=(2x+3)^2$, Find f'(x).

Practice:

a)
$$f(x) = (3x - 2x^2)^3$$

b) $y = \sqrt{x^2 + 1}$
c) $g(t) = \frac{-7}{(2t - 3)^2}$

d)
$$f(x) = (5-x)^2(3x+1)^3$$
 e) $y=\cos(3x^3)$ f) $y=\sec(\tan x)$

The General Power Rule

If $y = [u(x)]^n$, where u is a differentiable function of x and n is a rational number, then $\frac{d}{dx}[u^n] = nu^{n-1}u'$

<u>Ex.</u> 2: Find all points on the graph of $f(x) = \sqrt[3]{(x^2 - 1)^2}$ for which f'(x) = 0 and those for which f'(x) does not exist. Then graph to verify your answers.

<u>Ex 3</u>: An object moves along the x axis so that its position at any time is given by $x(t)=\cos(t^2+1)$ for t₂0. Find the velocity as a function of time.

<u>Ex</u> 4: Suppose that h(x)=f(g(x)) and that f'(3)=2, f(3)=4, g(5)=3, g'(3)=1 and g'(5)=7. Find h'(5).

Practice: Let f and g be differentiable functions such that h(x)=f(g(x)), f(1)=4 g(1)=3 f'(3)=-5f'(1)=-4 g'(1)=-3 g'(3)=2 Find h'(1) **<u>Ex. 5</u>**: More complicated. Find the derivative of each of the following:

a)
$$f(x) = \frac{x}{\sqrt[3]{x^2 + 4}}$$
 b) $y = \left(\frac{3x - 1}{x^2 + 3}\right)^2$

Nested functions...the chain rule more than once (often with trig) Ex. 6: $f(\theta) = 2\sin^2(2\theta)$

Try:
$$f(\theta) = \cos^2(3\theta)$$
 $y = \tan(\sin(x^2))$

$$f(t) = \sin^3 4t \qquad \qquad y = \sqrt{\csc(x^3 + 5x)}$$

_